Complex Cubic A₆B Compounds. I. The Crystal Structure of Na₆Tl*

By Sten Samson and D.A. Hansen[†]

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91109, U.S.A.

(Received 5 May 1971)

Na₆Tl represents one of the two structure types so far found for complex A₆B compounds of cubic symmetry containing about 400 atoms each per smallest unit cube, arranged according to space group $F\overline{4}3m$. A complete structure determination has been carried out for this compound, with the use of packing maps and subsequent least-squares refinements employing intensity data of 1602 reflections measured with an automated X-ray diffractometer. The length of the cube edge is $a_o = 24\cdot154\pm0.001$ Å (Cu $K\alpha_1 = 1.54051$ Å) giving a calculated density of $\varrho_c = 2.302$ g.cm⁻³. The final R value is 0.137. This unit cube contains one formula unit of Na₃₅₂Tl₅₆ (or eight units of Na₄₄Tl₇) and the atoms are distributed among 15 different point sets. Because of the likelihood of variable composition, especially in possible isostructural compounds, it seems practical to retain the formula Na₆Tl as a name for this structure type. The basic building block of the structure consists of a complex of 14 icosahedra and 42 pentagonal prisms, which is nearly identical to one of the four complexes occurring in Cu₄Cd₃. Four such complexes share a Laves-Friauf polyhedron, the center of which was not fully occupied in the crystal used. Each thallium atom is surrounded by an icosahedron of sodium atoms in such a way that there are no Tl-Tl contacts as was predicted on the basis of magnetic measurements.

Introduction

The crystal structure study of Na₆Tl reported here was proposed to us by Professor J. F. Smith (Department of Metallurgy, Iowa State University) for the purpose of supplementing the results, obtained at his laboratory from measurements of magnetic susceptibilities. These were found to be temperature-dependent paramagnetic and of the Curie–Weiss type, giving a Curie constant of $(4.92 \pm 0.25) \times 10^{-2}$ e.m.u., (°K/g.f.w.), which corresponds to 0.63 ± 0.02 Bohr magnetons per formula unit of Na₆Tl (*i.e.* per Tl atom). On the basis of this result and other calculations, Greiner, Hansen, & Smith (1969) predicted that the thallium atoms in Na₆Tl are isolated from one another, implying a Tl–Tl internuclear separation of about 5 Å or more.

A complete crystal-structure determination (R = 16%) confirming the above prediction was carried out here, during the summer of 1967, with the use of X-ray data obtained from an irregular crystal at the Ames Laboratory. The results were reported to that laboratory, and an outline of some of the structural features together with the magnetic data was given by Greiner *et al.* (1969). The structure is cubic, space group $F\overline{4}3m$, $a_o = 24.154$ Å.

The refinement of the structural parameters, and hence the present final report, was delayed to await the collection of improved X-ray data from a spherically ground crystal and the development of facilities for sphere grinding of the extremely reactive compound.

Earlier investigations establishing the existence of Na₆Tl, but providing no crystallographic data, were those of Kurnakow & Pushin (1902) and Grube & Schmidt (1936). The two papers present almost identical results, stating that the compound forms peritectically at 85.9 at. % sodium (Na_{6.1}Tl) and 78 °C.

Experimental

Sample preparation

A 10-gram sample of Na₆Tl (12·1 at.% Tl) was prepared by melting together reagent grade sodium (Fisher Scientific Company) and thallium of 99·99% purity (United Mineral and Chemical Corporation) in a stainless steel crucible, which was loaded and hermetically sealed by arc welding under dry argon gas. The sample was heated for one day at 350 °C and frequently agitated, then annealed inside an oil bath for two days at 70.0 ± 0.5 °C, for two days at 66.0 ± 0.5 °C, and finally cooled to room temperature at a rate of about 3° per hour.

The crucible was opened inside a locally designed and constructed glove box, equipped with a sphere grinder and a continuously operating, very effective NaK ('nack') gettering device, thus allowing ample time to manipulate the extremely reactive single crystals without causing detectable corrosion. Details of the apparatus will be described elsewhere.

Because Na₆Tl is soft, spheres were obtained within a few minutes of grinding. These were encapsulated in glass capillaries according to the description given by

^{*} Contribution No. 4248 from Arthur Amos Noyes Laboratory of Chemical Physics. This work was supported by Grant Nos. GP-7984 and GP-17504 (Samson) and CK-2272 (Hansen) from the National Science Foundation.

[†] Present address: Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65201, U.S.A.

Hansen (1968), thus avoiding the use of oil for corrosion protection.

Unit cell and space group

Laue, rotation, and Weissenberg photographs of layer lines 0 to 4 about [001] obtained with the use of an encapsulated sphere showed that the structure was face-centered cubic having Laue symmetry m3m. Only

reflections of the type hkl: h+k, k+l, (l+h)=2n were present. The probable space group is, accordingly, F432, Fm3m or F43m.

The length of the cube edge had been determined earlier at the Ames Laboratory with the use of an irregular crystal fragment, a General Electric diffractometer equipped with a 0.02° detector slit and a copper-target X-ray tube. Half-height, 2θ values were

Table 1. Observed and calculated structure factors for Na₆Tl

Each group of four columns contains, from left to right, indices l, observed structure factors, calculated structure factors, and standard deviations. Two dashes indicate that the measured value was given zero weight. Values of F(cal) are based on the final isotropic refinement (Table 2).

0 0 L	0 16 L 16 401 457 22 18 0 62	35 95 64 97 37 76 42110 1 11 L	24 215 163 41 26 107 166 71 28 53 109103 30 34 43123	5 325 32n 11 7 539 403 4 9 1001 1099 0	6 1618 1381 7 6 870 869 6 8 1453 1631 7	10 34 32142 4 26 L	24 C 43 5 27 L	19 529 503 10 21 17 152117 23 453 452 21 25 270 216 36	32 18 67165 36 0 87 36 98 10 98	27 195 152 57 29 47 57122 31 39 52131 29 145 74 87	19 135 142 60 21 62 123 94 23 0 67 25 133 140 63	29 34 25116 31 0 52168 33 41 74132	23 0 24 25 0 23 27 32 23141
* 670 668 * 6 1536 1530 7 8 141 150 27 10 902 927 6	22 227 100 41 24 86 132 80 20 172 172 58	11 +38 +71 15 13 #25 809 10 15 +25 +20 13	34 27 45137 36 0 22 38 0 42	13 538 484 12 15 475 570 12 17 199 161 34	12 217 155 24 14 1192 1975 7 16 910 922 9	24 109 31 95 5 5 L	6 6 L	20 113 167 74 20 0 20 31 3 66 31 37 110120	8 12 L 12 433 447 18 14 361 326 21	• 1• L	27 51 67115 74 117 120 75 31 128 43 80 33 6 15	13 15 12 53	15 25 L 25 0 87
12 2414 2439 11 14 296 259 19 16 548 526 12 18 1140 1147 8	30 111 91 85 32 11 19154 34 0 38	19 101 154 43 21 103 139 45 23 121 151 65 25 335 322 30	7 8 L 8 807 803 9 10 733 745 8	21 543 605 [n 23 198 146 44 25 118 115 65 27 225 185 45	20 420 418 20 22 397 437 22 24 17 48121 26 377 355 27	4 210 2207 9 7 837 809 6 9 650 653 11	8 3+3 117 15 10 4+6 477 13 12 2629 2005 9 14 468 462 17	37 100	14 350 247 25 26 100 140 46 27 218 204 42	21 1-7 744 16 21 2 mm153 25 31 116131 27 3 76	11 15 L	14 0 28 71 218 207 -6 73 34 68123 75 0 56 75 34 54123	10 16 L
20 721 745 12 22 274 528 50 24 429 447 22 26 240 221 19	0 18 L 18 785 785 14 20 2 37	27 40 134 84 24 74 114 96 31 47 43 90 33 70 34107	12 646 672 10 14 1022 1024 4 16 632 642 13 16 476 496 17	24 60 13103 31 9 65109 35 11 1917	28 178 171 53 10 209 1+0 50 12 47 35117 15 118 152 87	13 844 866 9 15 942 971 9 17 542 541 15 19 214 211 12	16 416 186 17 18 1041 1041 9 20 246 241 31 17 146 241 31	9 8-1 8-3 4 11 327 321 20 13 303 272 23	20 1:1 00 76 20 143 142 66 30 94 26 91	51 8 25 11 9 21 L	17 39 FLICS 19 225 219 47 21 12 64134	29 5 221AC 11 0 5	10 0 16 1 25 0 132 27 09 154 85 24 112 67 61
28 67 18 43 30 590 526 20 32 73 76101 34 122 27 81	22 0 45 24 344 366 32 26 0 31 28 3 16157	35 176 78 67 37 0 52 1 13 L	27 0 155 22 235 243 32 24 250 227 36 26 209 173 44	37 32 31141 3 7 i	17 0 01	21 273 211 30 23 311 314 29 25 537 592 19 27 152 163 58	76 199 167 66 78 61 52116 15 345 387 50	17 240 265 27 14 220 251 36 21 365 282 24 23 51 146 47	14 0 51 37 130 19 87	21 153 117 65 21 5 131 25 C 17 21 5 19	25 32 86127 27 203 174 55 29 67 8108	13 17 L 17 36 116 77	24 55 24118
36 35 90136 38 0 10 0 2 L	30 212 191 56 32 5 3 36 66 1131	13 469 448 16 15 0 28 17 60 80 83	24 350 330 31 30 134 65 71 32 134 163 67 34 67 63111	7 7+6 714 7 9 1348 108* 6 11 351 24* 19 13 546 572 11	A 422 463 11 8 546 616 4 10 669 647 9	29 0 107 41 10 112145 33 72 22103 35 89 125100	12 F 35 34 152 11 91 36 41 84134 18 6 24	25 19 20126 27 245 235 36 29 162 162 84 31 3 71	14 708 647 13 16 348 381 77 16 234 232 36	20 05 116 48 31 34 03142 9 23 6	33 68 63115 11 17 L	21 49 72 47 23 158 216 63 25 43 85:22 27 96 86 61	18 41 +4116 27 7 70
2 531 450	0 20 L 20 312 363 36 22 91 119 85	19 452 442 20 21 87 173 75 23 275 278 34 25 126 169 68	36 2 15105 38 59 46124 2 10 L	15 617 592 12 17 451 464 17 19 245 245 32 21 469 414 19	12 516 515 12 14 0 91 16 424 360 18 18 255 207 29	37 0 к2 5 7 L	0 8 L 8 39 L 24 10	14 44 168126 15 54 13122 37 6 13	20 181 231 48 22 104 144 35 24 203 154 49 26 0 75	23 39 08126 25 17 19146 27 0 97	17 177 233 50 19 189 167 49 21 6 107 23 65 19101	24 8 21157 31 0 32	24 114 49 92 26 101 41 41 29 7 46 11
10 170 216 25 12 325 261 16 14 216 252 26	24 147 122 67 25 73 44133 26 3 16 30 13 90157	27 34 87117 29 20 52136 31 82 86 93 33 71 75128	10 735 715 9 12 266 713 36 14 656 675 17	23 340 311 27 25 168 144 51 27 282 272 36 29 10 113124	20 394 602 21 22 157 165 69 24 165 167 56 26 0 50 1-	7 693 525 A 9 31 76 76 31 540 577 11 13 694 716 17	10 172 174 31 17 272 316 24 14 254 433 24 16 270 245 32	7 11 1 11 013 015 12 13 156 157 00	28 91 181 91 30 32 20133 32 5 102102 34 75 29111	20 84 38176 9 25 L	25 56 8-111 27 59 52167 29 68 87116 31 0 83	19 111 113 75 71 37 79121 21 4 52151	16 20 L
18 320 266 23 20 324 354 25 22 163 157 46	0 22 1	L 15 L	10 024 074 17 14 241 212 12 20 124 156 26 22 137 136 27	11 135 147 76 15 68 36110 37 0 60	30 31 1110 32 0 91 32 0 91 14 0 51	17 357 361 27 17 357 361 27 19 2-1 269 32 21 63 31 85	4, 58 135 86 27 132 114 57 24 83 99 40	17 2 80 17 23 201 20 21 113 183 45	8 16 i 16 378 391 24	25 0 47 27 147 81 65 10 10 1	33 5 27 11 14 t	21 124 94 78 27 16 69135 29 115 98 48 31 0 10	22 123 131 64 24 68 87110 26 7 45 28 34 68141
20 0 51 28 0 26 30 97 44 82 32 98 81 87	24 3 35155 26 86 28 98 24 116 0 85 30 4 34166	17 31 9104 19 297 301 30 21 199 63 51 23 0 25	26 226 232 44 26 119 155 73 30 40 77 84 32 131 66 70	3 9 L 9 379 285 17 11 765 757 9	38 0 31 4 8 L	25 311 279 31 27 46 61117 29 22 94131	74 39 92117 30 6 39 37 6 67	25 34 114117 27 3 49 29 3 114117 29 3 10 10	20 279 210 35 22 233 195 42 24 253 124 10	10 446 410 14 12 140 200 36 14 721 716 12	21 55 Tel00 21 157 144 65 25 140 145 72	13 21 C 21 45 87105	16 27 L 22 18 124116
14 17 6145 50 106 26 90 38 0 38	32 51 29130 0 24 L	25 169 122 56 27 271 226 41 29 0 91 31 141 113 74	34 65 103112 36 0 18 2 12 L	13 766 763 10 15 148 406 19 17 674 705 11 19 478 507 19	4 1773 1256 6 10 400 725 4 12 199 168 29 14 311 320 22	33 76 +7102 35 0 71 37 104 00 96	16 54 21122 6 15 L	33 3 56 35 3 48 7 13 1	24 29 104133 30 36 6130 32 156 68 72 34 0 32	15 110 ev e/ 21 215 263 40 22 126 201 50 24 126 201 50 24 145 146 45	29 0 22	25 0 15 0 27 0 210 29 0 3510	26 8 25 1
· · · · · · · · · · · · · · · · · · ·	26 263 271 49 26 0 00 28 28 0142 30 31 59145	1 101 73 71 15 0 43 1 17 L	12 636 609 12 14 256 250 28 16 171 117 42	21 142 150 53 23 378 392 25 25 207 256 44 27 47 145 79	16 342 363 20 18 114 304 24 20 429 419 20 22 424 412 18	5 9 L 9 590 556 10 11 499 479 13	10 525 487 13 12 40 125 84 14 489 461 16 14 505 537 16	13 773 786 12 15 250 259 32 17 631 604 15	9 18 L 19 279 245 41	26 316 280 34 28 84 168 93 36 184 151 60 32 0 54	21 276 264 67 21 6 67 25 159 112 71	0210 23 6 115	24 93 37121 26 5 24
10 598 574 V 12 0 51 14 670 692 10	0 26 L 26 89 122100 28 10 9160	17 0 41 19 365 340 26 21 109 159 53 23 163 208 62	10 344 375 22 20 242 220 34 22 219 247 40 24 00 124 92 26 05 10102	11 0 10 11 0 10 13 0 16 15 04 112 06	26 180 187 51 26 180 187 51 27 69 119 95 30 66 50104	13 47 20 55 15 424 945 4 17 19 47179 19 357 346 24	14 96 109 86 12 149 119 52 27 196 125 46 26 156 155 56	21 31 12C11 21 31 12C11 23 40 1111C3 25 215 205 46	20 83 142 86 22 225 191 46 24 79 100 95 26 0 93	10 12 L	27 82 46164 29 (26 31 0 30	27 71 69113 13 25 C	17 82 83 64 19 119 187 71 21 0 17 17
18 157 138 42 20 93 90 65 22 229 137 36 24 234 173 37	1 L L 1 584 549	25 07 80 84 27 6 54151 29 113 55 82 31 62 76114	28 110 146 78 30 17 41141 32 35 96116 34 18 04150	3 11 1	30 117 42 8V	23 0 16 25 0 131 27 311 285 35	24 7 10166 36 0 116	29 (57 177 e5 51 33 112131 11 27 66(140	37 28 27142 32 0 65	12 157 147 45 14 57 45 84 16 146 117 40	23 54 98117 25 61 64127	25 40 641-77 27 125 27 88 14 14 L	23 124 124 14 25 16 64147 27 51 42124 29 11 42124
26 255 265 37 28 35 9114 30 0 137 32 25 6136	3 842 885 5 1387 1382 8 7 1022 1043 8 9 841 597 8	33 0 50 35 0 39 1 39 L	2 in L	13 357 321 20 15 685 667 12 17 127 152 51 19 275 265 10	10 1059 1064 7 12 109 177 36 16 561 556 16	31 178 131 61 33 04 45 03 35 71 5-111 37 0 16	36 0 57 6 12 L	7 15 L 15 257 246 37	20 124 105 71 72 176 130 5# 24 36 39126	20 244 275 31 22 102 48 74 24 31 57119	29 6 6167 11 25 1	14 405 410 23 16 354 368 25 18 233 185 40 20 200 254 41	17 39 L 19 96 L10 49 21 91 72117
36 0 69	11 653 680 8 13 696 717 9 15 431 564 15 17 431 422 17	19 104 104 73 21 12 72136 23 0 09	14 200 184 36 16 295 266 27 18 313 270 26 20 527 319 28	21 322 704 74 23 133 117 59 25 0 25 27 270 232 39	10 390 413 20 18 103 110 02 20 595 596 10 22 459 452 21	5 11 L 11 912 940 9	12 1629 1220 9 14 179 193 41 16 254 125 11 19 825 879 11	17 69 107 84 14 27 30114 21 241 284 33 23 46 99104	20 54 100117 24 12 50155 30 8 42159 32 84 27108	24 C 44 10 122 41 41 12 C 44 14 C 14		22 172 172 57 24 37 38127 26 194 156 55 24 43 61125	21 - 20 25 - 44 - 63123 21 - 122 - 67 - 46 24 - 12 - 67124
6 3715 3742 11 6 102 210 36	21 355 224 23 21 363 375 24 23 363 375 24 25 445 397 22	25 165 186 61 27 33 83130 29 0 90 31 11 63157	22 381 176 26 24 162 150 56 26 60 141102 25 30 93125	29 49 71115 31 67 67119 31 237 137 57 35 65 15128	26 143 122 51 26 143 122 51 24 146 179 (c) 30 0 92	11 245 278 25 15 378 266 25 17 296 333 27 17 352 322 16	25 122 65 61 22 65 95 89 24 527 407 20 25 133 65 67	25 74 168 54 27 68 103102 29 0 7 31 38 13131	6 77 L 72 756 734 44	10 14 L 14 254 210 39	12 1095 1094 15 19 102 211 42 19 130 110 57	14 15 1 14 15 L	21 - 21 - 21 - 21 - 21 - 21 - 21 - 21 -
12 1119 1352 7 14 413 441 16 16 300 404 23 18 1046 1055 9	29 68 87 96 31 0 90 33 14 6/146	1 21 L	30 21 41140 32 0 68 34 58 92119 30 61 40122	3 13 L	34 0 04 36 99 00 98	21 279 324 37 23 0 111 25 118 149 49 27 89 35 86	11 11 11 11 K 276 251 31 N 46 31124 16 3 47 49	33 0 38 35 77 33112 7 17 L	24 22 60:14 26 62 124:28 28 82 57:06 30 105 34 95	16 150 207 43 18 64 65 69 27 167 363 26 27 357 266 33	18 691 679 15 20 0 44 22 195 225 44 24 376 371 30	16 343 356 75 18 165 163 60 27 61 1161001	23 0 14 1 27 122 14 12 27 0 10 10 10
20 352 332 24 22 194 164 41 24 802 784 13 26 222 229 41	37 115 101 88 39 79 13111	23 36 05123 25 144 133 07 27 0 62 29 0 42	2 16 L 16 273 252 11 18 185 188 55	15 378 399 21 17 411 388 21 19 262 262 32 21 326 313 29	12 127 136 48 16 346 320 22 16 120 223 41	11 206 (n4 55 11 19 22)47 15 0 60 37 0 36	6 14 L 15 255 226 31	17 152 403 27 19 15 42127 21 5 55 23 59 68152	8 74 L 74 173 63 64 76 8 43163	26 U 47 28 66 119 95 15 11 61151 37 161 91 71	20 158 166 62 36 206 261 57 42 C 66	24 82 43 96 26 87 43 96 26 108 135 87 28 43 61127 29 10 10 100	23 19 5515
28 0 70 30 194 199 53 32 62 71107 19 37	3 1457 1440 6 5 17 28 66 7 142 178 27	1 23 L	20 339 316 28 22 339 328 10 26 21 71129 26 128 157 71	21 212 214 41 25 109 122 74 27 260 214 42 29 54 101112	14 217 212 14 20 4 56 22 178 159 50 24 152 151 57	5 13 L	15 215 176 17 18 0 126 20 287 305 37 21 51 111150	25 137 162 16 27 76 119165 24 71 127166 31 15 76156	74 65 62.23 8 26 6	3~ C ~3 17 16 L	12 14 U 14 197 270 41	12 26 13166 16 18 1	14 14 L 16 122 122 15 25 63 2451
0 8 L	11 307 381 13 13 232 215 23 15 809 764 9 17 298 277 23	25 156 87 69 27 5 56160 29 15 75151	10 0 31 32 23 611+1 3+ 41 87102	31 220 121 57 35 0 29	74 44 177115 10 76 41 99 12 48 51171 14 48 10112	17 162 164 67 17 365 334 74 19 269 263 33 21 0 14 4	26 7 21 26 7 21 24 106 61 81 17 15 221 51 17 162 92 63	7 19 L	• • L	16 177 216 40 18 17 54.31 20 326 345 31 22 263 288 36	16 149 105 53 18 64 155 79 20 27 57110 27 167 109 49	16 117 116 16 20 55 67107 27 76 76 76 76 16 76 76	26 2 11 11 19 26 2 11 18 51 26 52 69127
8 783 760 7 10 248 312 21 12 203 247 23 14 74 168 64	19 307 265 25 21 413 365 21 23 213 202 39 25 19 10121	1 25 6	2 18 L 18 273 243 15 20 182 141 50	15 92 88 67 17 373 345 24 19 255 327 34	16 132 19 A3	25 150 142 61 27 79 78 43 27 81 68 76 31 72 49126	5 10 L	21 149 130 62 23 214 224 50 25 54 83113 27 94 87 94	11 11(7 1106 A 13 611 669 13 15 26 125173 17 653 629 71	26 50 46100 26 97 107 96 30 C 76	26 66 123164 28 78 67170 36 0 40	26 91 68 99 37 95 16100	18 25 L 20 03 76 42 27 112 46 85
16 49 60 82 18 138 92 48 20 213 258 37 22 78 73 77	27 356 297 28 29 111 119 75 31 126 84 74 33 145 130 71	27 70 12111 29 29 48143 1 27 1	22 107 154 75 24 75 127 93 76 0 67 28 133 128 75	21 134 148 61 23 167 215 54 25 0 99 27 0 36	10 610 624 14 10 650 631 14 18 160 187 49 20 114 137 58	33 8 33 22	18 332 250 26 14 137 115 57 20 192 228 47 24 136 114 74	29 118 44 85 51 93 62100 35 6 50	19 476 467 71 71 268 271 34 23 272 307 35 24 C 96	34 0 49 10 16 L	36 () 6(1)) 17 16 L	26 140 201 71 22 115 142 76 24 80 104101	/* 0 18 /* 0 // /* 0 1/
26 19 75126 28 37 93117 30 50 41113 32 2 89158	37 32 38138 1 5 L	27 0 73 2 2 L	32 0 62 34 15 42159	31 143 94 73 33 74 25109 35 0 50	24 45 139107 24 253 227 41 24 219 184 49 27 91 94 92	15 25 52108 17 208 262 40 19 140 148 56 21 505 472 21	26 66 621(2 28 75 6112) 10 106 76 68	21 112 98 78 21 112 98 78 21 0 69	20 244 245 45 31 126 150 71 33 16 52149	25 83 81 86 27 58 19106 26 9 12167	16 156 136 60 18 0 111 26 57 21102 22 26 99126	26 106 45 97 26 0 61 30 0 21	18 27 1 22 41 82171
34 107 14 92 36 153 32 74 38 39 30138	5 549 542 7 7 1019 1307 6 9 639 667 8 11 1081 1079 6	2 966 963 5 4 1606 1561 7 6 469 447 8 8 2267 2304 10	20 1 32 107 66 22 21 116132 24 0 40	3 17 L 17 272 245 32 19 161 173 45	32 23 71143 34 107 76 94 36 2 21171	23 0 54 25 301 270 36 27 93 56 68 29 66 61137	14 0 33 6 18 L	27 0 104 29 3 41 31 15 39155	9 11 L 11 277 241 26	26 10 40152 30 0 13 12 0 33	26 26 83135 26 3 46159 36 3 37 32 6 20	22 121 03 81 24 85 73100 26 0 21	18 7~ 1
10 1600 1606 8 12 465 492 15	15 470 304 14 15 470 304 14 17 383 408 19 19 664 646 13	10 382 381 9 12 677 659 9 14 607 629 11 16 634 615 12 18 520 517 15	26 151 128 64 26 35 91131 10 97 54 96 32 55 42123	21 312 246 12 23 144 144 63 25 91 72 47 27 89 127 92	14 600 600 16 14 119 90 63	11 72 63155 33 70 72112 35 60 79120	10 561 531 14 20 C 56 22 36 105115 24 344 364 29	7 23 L 21 135 L76 76 25 88 58 99 -	13 256 273 29 15 772 233 29 17 182 250 42 19 63 123 87	10 20 1 20 172 135 57 22 0 45	12 18 L 18 405 468 23	24 20 96152 14 24 L	19 19 1
16 433 367 18 18 40 45 94 26 527 535 17 22 55 193 91	23 103 104 55 25 183 160 48 27 49 56103 29 186 199 53	20 513 514 18 22 678 654 14 24 227 181 18 26 184 241 48	2 22 L 22 0 93 24 142 98 72	31 0 25 35 79 94108 35 20 23154	22 73 136 9C 26 0 116 26 210 218 51 28 156 166 67	17 224 229 39 19 172 149 50 21 0 52	26 0 60 30 51 167121 52 8 38162 34 3 33	20 0 18 7 25 C	73 0 97143 75 147 178 67 77 147 133 57 79 0 67	26 146 157 L7 28 0 70 30 126 96 86	22 161 133 67 24 306 260 19 26 0 65 26 0 96	S 2 10	23 67 47113 23 6 115 47 25 63 84118 27 95 36117
20 130 05 20 130 05 57 28 0 2 30 177 168 00	31 242 221 45 33 76 25101 35 37 81137 37 0 43170	28 169 155 50 10 178 10+ 55 32 6 82153 34 153 162 73	26 39 81127 28 137 157 79 30 0 18 32 124 85 89	3 19 L 19 178 181 51 21 05 152 94	10 0 45 12 0 78 14 0 77	21 54 107101 25 185 126 55 27 62 62107 29 15 54 98	6 20 L 20 91 65 84	25 132 63 41 27 0 37 29 131 41 86	31 0 40 33 0 74 35 62 57119	17 22 L 22 26 109135 24 25 33139	30 68 146115 32 0 51 12 70 L	15 264 279 15 17 131 163 63 19 307 309 34 21 77 165 92	51 0 39 19 21 L
34 0 62 36 80 74108	1 7 L 7 548 548 9 9 357 383 15	38 21 99150 2 4 1	2 24 L 24 63 56111 26 6 72157	25 6 14151 27 66 140107 29 0 66	14 179 158 48 20 20 74125 22 109 113 74	33 114 1991 5 19 1	24 155 86 94 26 19 106141 28 121 11 83 10 153 76 77	27 33 63146	13 272 259 29 15 413 421 21	26 33 101101 28 33 17140 30 11 34162	20 119 142 75 22 48 48117 24 0 46	25 26 37116 27 26 37116 27 26 55 29 148 151 64	25 C 6C 19 23 C
12 1097 1001 8 14 224 172 31 16 175 134 41	11 526 565 11 13 759 725 9 15 69 71 67 17 503 513 16	4 712 667 6 222 246 18 8 959 988 6 10 932 941 6	24 74 44112 30 0 24 2 26 L	33 75 64114 3 21 L	24 124 66 73 25 133 93 73 28 15 62155 37 0 24	19 292 277 36 21 1-3 199 63 23 91 171 87 25 9 96	6 22 L	4 1837 1935 9 17 376 381 17 12 673 697 11	19 163 193 50 21 221 205 52 23 189 163 59 25 24	20 04 70115 20 04 70115 24 0 7175	20 75 20100 30 0 21	15 17 L	50 50 F
18 913 876 11 20 136 104 50 22 0 100 24 469 478 22	19 450 410 18 21 00 193 85 23 70 08 82 25 239 192 40	12 430 476 13 14 1107 1134 7 16 771 765 10 16 201 140 35	26 0 23 28 48 71129	21 8 28143 23 100 175 84 25 06 126107 27 36 31130	12 7 43161 14 0 39	27 18 16142 29 109 96 99 31 105 101 91 13 74 14112	22 57 52110 14 32 65130 26 C 66 28 0 40	14 305 380 27 16 444 401 18 18 444 421 19 20 304 372 23	27 209 177 51 29 47 72117 31 60 49115 33 57 89125	12 26 E 26 0 40	22 0 81 24 5 65 26 56 20120	19 67 15113 21 216 276 50 23 0 31 25 31 76137	21 0 AL 22 42 441/A 24 0 10 26 0 10
26 0 29 30 321 301 37 32 0 17	20 241 102 43 31 142 107 70 33 0 64	20 347 455 21 22 353 390 23 24 226 206 38 26 75 141 #6	1 1092 1672 1 5 947 1007 5	31 0 28 3 23 L	7) 312 266 34 27 251 216 43 25 133 122 71	5 21 1 21 - 2	6 24 L	24 163 177 53 26 159 178 54 26 159 178 54 25 35 132 40	9 15 L	11 11 1 11 357 595 27	12 74 L	27 48 24,34 29 0 18 31 17 13:53	26 22 6 22 12 12144
3. 5 87 0 1. L	37 8 18 11 1 9 L	30 16 11138 52 189 166 57 16 70 55107 36 0 38	4 6/0 707 A 11 1146 1170 6 11 1223 1253 6 15 0 96	23 21 140141 25 98 67 91 27 25 114141 29 89 65103	24 28 46139 10 127 50 63 32 25 72147	25 62 76119 27 146 142 71 29 64 64155 11 21 43151	26 21 6115 14 21 94151 15 177 146 95	12 F1 G6104 14 61 128105 16 90 37102	17 485 493 20 16 85 131 79 21 118 126 55 23 136 242 44	15 316 350 20 17 245 277 26 19 217 212 40 21 212 104 44	26 0 24 28 0 42 12 76 1	19 199 132 02 21 0 24 02 21 0 24 02	21 21 1 21 21 1
14 351 426 23 16 299 318 27 18 0 47 20 17 72121	9 1082 1092 8 11 392 351 15 13 347 357 19 15 419 377 17	38 35 30138 2 5 L	17 827 829 19 19 570 824 15 24 142 197 51 23 572 513 23	31 9 22 3 25 L	* 77 C		- 6 20 L 20 225 16 85 26 84 19166	8 10 L 10 674 673 11 12 316 284 23	25 219 247 48 27 47 59117 29 6 59 4 31 0 11	21 174 216 52 25 242 244 46 27 0 41	20 0 35 13 13 L	25 26 51136 27 161 171 165 28 16 161 161	
24 0 117 26 165 233 59 24 6 8151 10 65 97	17 178 184 40 19 253 253 31 21 431 579 15 23 115 160 55	8 157 347 11 10 164 122 27 12 116 116 116 37 13 107 117	27 144 264 55 27 274 216 46 27 214 255 47 11 17 15522	27 146 49 14 27 17 41 29 11 12142	74 27 61147 30 3 29	20 0 10 10 20 0 20 10 20 0 20 10 20 0 20 10 20 0 20 10 20 10 20 20 10 20 10 20 20 10 20 10 20 10 20 10 20 20 20 10 20 10 20 10 20 10 20 10 20 10	7 7 L	14 344 316 15 16 544 534 16 14 213 254 30 20 214 236 36	9 17 18 18 95	11 86 FR 97 11 2 31 15 171 87 70	13 257 267 32 15 125 185 41 17 125 157 42	15 21 . 21 6 152556 23 0 172	23 (14 77 27 L
32 7 10158 34 0 46 36 63 45121	21 165 156 56 20 56 5715A 31 0 53	16 262 297 25 18 269 227 35 20 96 125 67 22 214 179 35	35 0 91 37 25 7etes 3 5 1	27 27 45100	24 57 59115 24 51 19115 24 41 19115 25 45 191	5 25 L 25 265 164 20 27 9 54123	11 261 266 9 13 623 544 12 15 120 218 39 17 236 267 32	24 37 48111 26 223 214 45 28 141 157 56 30 111 57 81	19 151 130 57 21 128 184 67 23 67 139 98 25 13 73176	13 449 452 14 15 6 15 17 315 316 24	21 150 1+6 57 23 3+4 332 31 25 111 124 45 27 111 124 45	12 11 100 00 12 12 10 10 14 10 10 15 21 1	22 - #9 - 1-2013

determined for 20 α_1 reflections in the region $142^\circ \le 2\theta \le 161^\circ$ with the 2θ -scan technique. The averages of these were fitted by least-squares calculations to the Nelson-Riley (1954) function and gave $a_o = 24 \cdot 154 \pm 0.001$ Å [λ (Cu K α_1) = 1.54051 Å].

The extreme reactivity of Na₆Tl precluded experimental determination of the density. The unit-cell content was estimated with the use of average atomic volumes assuming a contraction of 10%. Assumption of 239 Å³ per formula unit of Na₆Tl leads to a unit-cell content of approximately 412 atoms.

Intensity data

Intensities were measured on a locally assembled, Syntex-automated, E&A full-circle diffractometer, equipped with a scintillation detector modified according to Samson (1966), an Ortec counter circuitry with pulse-height analyser, a graphite monochromator designed and built in this laboratory's instrument shop, and a molybdenum-target X-ray tube. The diffractometer was aligned according to Samson (1967*a*). The X-ray collimator and the counter apertures were designed locally so as to provide maximum signal-tobackground ratios.

The 2θ : θ -scan method was used throughout at scanning speeds proportional to the peak intensities between 200 and 1500 counts per sec. The scanning speed used at, or below, 200 cps (peak counts) was 0.5° min⁻¹ and at, or above, 1500 cps 2° min⁻¹. The total background counting time for each reflection was equal to the scanning time. This variable-scan-speed program was written by Dr Richard Stanford for the online Varian 620i computer controlling the diffractometer. This is the same principle now applied in a refined fashion to the well-known Syntex diffractometer.

The counter-aperture-to-crystal distance was set so as to give an optimal signal-to-background ratio, which was established by plotting the distance against the ratio. At the optimal setting of 3.25 inches the ratio was improved by a factor of four as compared to that obtained at the distance of about 1.25 inches (or less) used on certain unmodified commercial instruments. The locally designed X-ray tube holder used here provides for both horizontal and vertical tube alignment. In the present experiment, the X-ray tube was set vertically, and the plane-normal of the graphite monochromator was perpendicular to the diffraction vector.

The crystal used was a sphere of 0.117 mm radius. Spherical absorption-correction factors for $\mu R = 1.84$ were applied to the measured intensities, and the effect of the monochromator on the polarization was taken into account with the use of the formula given by Arndt & Willis (1966), inserting $\theta_M = 6.08^\circ$ and $\epsilon = 90^\circ$. 1602 symmetrically independent reflections were measured, of which as many as 989 had an integrated intensity which was less than, or equal to, one standard deviation. The large number of very weak reflections is due to the high temperature factor associated with the low-melting point and the softness of the compound. Some very low-order reflections were feared to be affected by air scattering because of their proximity to the primary beam and were given zero weight. All other F_{a} values marked in Table 1 by two dashes were given zero weight because the integrated intensity was either zero or negative.

Derivation and isotropic refinement of the structure

The structure was derived by the method outlined by Samson (1964) which employs packing maps of the 'most useful planes', the nature of which depends on the space group. Since the crystal of Na₆Tl was assumed (and soon found) to have the space-group symmetry $F\overline{4}3m$, many of the arguments used to determine its atomic arrangement are the same as those in the case of Cu₄Cd₃ (Samson, 1967b), and the reader is

Table 2. The refined positional parameters ($\times 10^{5}$), population factors, and isotropic temperature factors for Na₆Tl

The standard deviations are given in parentheses.

Atom					
no.	Kind	Point set	x	Z	В
1	Na	48(h) xxz, etc.	14228 (14)	03346 (21)	5·7 (2) Å ²
2	Na	48(h) xxz, etc.	08984 (17)	26791 (20)	6.3 (2)
3	Na	48(h) xxz, etc.	15395 (16)	52856 (19)	6.4 (3)
4	Na	48(h) xxz, etc.	05604 (15)	76942 (21)	5.9 (2)
5	Na	48(h) xxz, etc.	19809 (14)	90985 (20)	5.9 (2)
6	Na	$24(f) \times 00, etc.$	10858 (28)		5.2 (3)
7	Tl	$24(f) \times 00, etc.$	33516 (4)		4.39 (4)
8	Na*	$24(g) x \frac{11}{24}, etc.$	06815 (43)		7.3 (6)
9	Na	16(e) xxx, etc.	30267 (23)		4.1 (4)
10	Na	16(e) xxx, etc.	41542 (26)		3.4 (4)
11	Na	16(e) xxx, etc.	55549 (24)		3.6 (3)
12	Na	16(e) xxx, etc.	67234 (24)		3.6 (3)
13	Tl	16(e) xxx, etc.	16755 (3)		3.59 (4)
14	Tl	16(e) xxx, etc.	90136 (3)		3.30 (3)
15	Void†	$4(d) = \frac{1}{2} \frac{1}{3}$, etc.			

* Occupancy $94 \pm 2\%$. † Occupancy $19 \pm 5\%$ if *B* is assumed to be 5.0. referred to that paper for more details. Space group $F\overline{4}3m$ has a single most useful plane: the (110) plane.

An enlightening feature discovered in the course of this work was the ease with which the Patterson vectors could be interpreted when they were plotted on a transparent template and then superimposed on the packing map. In such a manner, the only reasonable interpretation of the *uuw* Patterson section of Na₆Tl was that the thallium atoms are located at the points marked 7, 13, and 14 on the (110) packing map shown in Fig. 1. It is seen that these points are arranged approximately around a fivefold axis of symmetry. Since the thallium atoms are smaller in radius (by about 10%) than the sodium atoms, it suggested itself that each of these represents the center of an icosahedron. Hence, the basic building block of the structure of Na₆Tl should incorporate a set of five icosahedra arranged about a fivefold axis of symmetry in a manner similar to that observed for one of the four atom complexes occurring in Cu₄Cd₃. Accordingly, the five polygonal sections through the icosahedra marked 7, 13, and 14 in Fig. 1 were placed so as to match the pattern created by the polygonal sections marked 20, 27, and 28 in Fig. 1 of Samson's (1967b) paper on Cu₄Cd₃. The perfect geometrical fit of the fivefold sets on the packing map aroused immediate confidence as

Fig. 1. Packing map of the structure of Na₆Tl, representing the 'most useful plane' [(110) plane] for space group F43m. The asterisks indicate the location of the fourfold inversion centers. The polygonal sections marked 7, 13, and 14 represent icosahedra arranged approximately about fivefold axes of symmetry. Comparison of this figure with Fig. 1 in the paper describing Cu₄Cd₃ (Samson 1967b) shows that the Na₆Tl structure type represents part of the structural motif of Cu₄Cd₃.

to the likelihood of the correctness of this model. One more atom (Na 12) had to be added out from the center of each hexagon of the Laves-Friauf polyhedron and possibly one additional atom at the center of each such polyhedron (point set 4(d), marked VD for void in Fig. 1), which appeared to be somewhat crowded.

This distribution of atoms, which corresponds to the one given in Table 2, accounts for one formula unit of $Na_{356}Tl_{56}$ or $Na_{352}Tl_{56}$ (if 4(d) is empty) per unit cube. This agrees well with the content of about 412 atoms expected on the basis of average atomic volumes discussed in the preceding section.

With the atoms placed according to the 15 different point sets given in Table 2, the structure model was tested and refined by least-squares calculations including the 19 positional parameters, the 15 isotropic temperature factors, and the scale factors in one 35×35 matrix.

The calculations were done with the use of the *CRYM* system on an IBM 360/75 computer. The quantity minimized was $\sum w(F_o^2 - S^2F_c^2)^2$, where 1/S is the scale factor of F_o and the weighting scheme is that described by Peterson & Levy (1957), modified so as to apply to F^2 rather than to F. All the R values quoted below are defined as $\sum ||F_o| - |F_c|| / \sum |F_o||$. The atomic scattering factors for Na and Tl were taken from Cromer & Waber (1965) and the anomalous dispersion correction factors from Cromer (1965). These were applied according to the scheme given by Dauben & Templeton (1955).

The first refinement was done using intensity data obtained from an irregular crystal at the Ames Laboratory. The refinement converged rapidly, resulting in an R of 0.16. The center of the Laves-Friauf polyhedron was found to be unoccupied as evidenced by a very high temperature factor for the assumed atom Na (15) (see Table 2).

As the new data became available, the refinement was first continued using all the 615 reflections having net intensities *I* larger than $\sigma(I)$. Evidence was obtained, again, that the point set 4(d) was occupied to only a small extent, or was perhaps empty, and the agreement index *R* was 0.064. Inclusion of all the 1602 intensity data in the refinement did not result in a significant change of the positional parameters, but in a noticeable improvement of the standard deviations, and a slight increase in some of the temperature factors.

In the final refinement cycles employing all 1602 data, two population parameters p were included, one for Na(8), which had a comparatively high temperature factor, and one for point set 4(d) [void (15)]. The temperature factor for (4d) was fixed somewhat arbitrarily at B = 5.0 and excluded from the refinement. In addition, a secondary-extinction parameter g was applied according to equation (3) of the paper by Larson (1967), the matrix now being 37×37 . The largest final shift was close to one third of its standard deviation.

The final R value obtained with all data included was 0.137, which is considered reasonable in view of

the exceptionally large number of very weak reflections and the scattering from the capillary. The final goodness-of-fit was 1.12, and the extinction parameter refined to $g = (3.53 \pm 0.15) \times 10^{-9}$.

The final positional parameters, the population factors, and the isotropic temperature factors are listed in Table 2 and the structure factors in Table 1. Because of the close coupling with the temperature factors, the population parameters may be of questionable accuracy.

The chemical formula that corresponds to the refined model may be taken as $Na_{352}Tl_{56}$ or $Na_{6\cdot29}Tl$ ($\varrho_{calc} =$ 2·302 g.cm⁻³). Because of the possibility of variable composition, especially in possible isostructural compounds (see below), it seems practical to retain the name Na_6Tl for this structure type.

Cursory anisotropic refinement

The relatively large magnitude of the isotropic temperature factors is most likely due to the low melting point of the compound (78 °C; see Introduction), which, in turn is reflected in the softness of the crystals. In order to obtain some idea about the anisotropy of the thermal motions, three additional least-squares calculations were carried out, this time with the use of program XFLS.*

The parameters listed in Table 2 were used as a starting point. Full occupancy was assumed of all positions except for 'void 15', which was taken to be occupied 19% of the time by sodium, with B(iso) fixed at 5.0 (as before). The result is shown in Table 3.

The positional parameter X of Na(2) changed from 0.08984 (Table 2) to 0.09126, the parameter Z of Na(3) changed from 0.52856 to 0.52985, and the parameter X of Na(12) from 0.67234 to 0.67521. The changes in the other positional parameters were equal to, or less than three standard deviations.

* XFLS is an IBM-360 version of ORFLS (Busing, Martin & Levy, 1962).

The R value for the 615 reflections having net intensities I larger than $\sigma(I)$ decreased from 0.064 to 0.050. The overall R value, for 1599 reflections, including 312 data representing zero intensity, is 0.186.

Since the program has no provision for refining the extinction parameter g discussed in the preceding section, the two strongest reflections, 066 & 228, were excluded from the refinement.

It is seen that the atoms Na(5) and Na(12) constituting the Laves-Friauf polyhedron show the most pronounced anisotropy.

Description of the structure

Each of the 56 thallium atoms is surrounded by an icosahedron of 12 sodium atoms. The structure can be described most conveniently in terms of a complex consisting of 14 such icosahedra as shown in Fig. 2. Five icosahedra are arranged approximately about a fivefold axis of symmetry [Fig. 2(a)], thus enclosing a pentagonal prism. These icosahedra are the ones that have been marked 7, 13, and 14 on the packing map Fig. 1. Six such fivefold rings interpenetrate one another and share icosahedra so as to form the aggregate shown in Fig. 2(c), which consists of 14 icosahedra that enclose six pentagonal prisms of the kind shown at the center of Fig. 2(a). The center of each such prism is located at the vertex of an octahedron of T_d symmetry. Fig. 2(b) shows two such fivefold rings interpenetrating at right angles. It is now seen that the pentagonal prism at the center of Fig. 2(a) is shared between two icosahedra, one above and the other below the plane of the paper. The two icosahedra have one vertex in common at the center of that pentagonal prism, and each icosahedron center is at an extended pole of that prism. Each additional vertex that is shared between two icosahedra represents the center of a pentagonal prism (which has two atoms at its extended poles), as seen in Fig. 2(c). Accordingly, 36 more pentagonal prisms are created.

The aggregate shown in Fig. 2(c), accordingly, represents 14 icosahedra and 42 pentagonal prisms,

Table 3. Anisotropic thermal parameters for Na₆Tl

The expression used was of the form: $-[B'_{11}h^2 + B'_{22}k^2 + B'_{33}l^2 + 2B'_{12}hk + 2B'_{13}kl + 2B'_{23}kl]$. The standard deviations are given in parentheses, and $B'_{ij} = 4a_0^2 B_{ij}(Å^2)$.

	B_{11}	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B_{23}
Na(1)	5.9 (2)	B_{11}	4.1 (4)	0.3 (3)	-1.1 (2)	B ₁₃
Na(2)	6-3 (3)	B_{11}	6.7 (5)	0.1 (4)	0.8 (3)	B_{13}
Na(3)	5.8 (3)	B_{11}	6.7 (5)	1.1 (4)	-0.5(3)	B_{13}
Na(4)	5.4 (2)	B_{11}	5.5 (5)	-0.6(3)	0.7 (2)	B_{13}
Na(5)	4.8 (2)	B_{11}	8.0 (5)	-0.7(3)	0.3 (2)	B_{13}
Na(6)	6.7 (5)	4.2 (3)	B ₂₂	0	0	-0.1 (5)
T(7)	2.96 (5)	4.92 (5)	$B_{22}^{}$	0	0	-0.19 (7)
Na(8)	7.9 (9)	7.5 (5)	$B_{22}^{}$	0	0	0.5 (7)
Na(9)	4.5 (4)	B_{11}	B_{11}	-0.8(3)	B_{12}	B_{12}
Na(10)	4.8 (4)	B_{11}	B_{11}^{-1}	0.4 (3)	B_{12}	B_{12}
Na(11)	4.4 (3)	B_{11}	B_{11}	0.7 (4)	B_{12}	B_{12}
Na(12)	5.0 (3)	B_{11}	B_{11}	2.2 (4)	B_{12}	B_{12}
Tl(13)	3.56 (2)	B_{11}	B_{11}	0.37 (5)	B_{12}	B_{12}
Tl(14)	3.20 (2)	B_{11}	B_{11}	0.03 (2)	B_{12}	B_{12}

Fig. 2. (a) The basic building block of Na₆Tl consisting of an aggregate of five icosahedra arranged approximately about a fivefold axis of symmetry. (b) Two such fivefold rings interpenetrating at right angles in such a way that the central pentagonal prism in (a) is shared by two icosahedra. (c) Six interpenetrating fivefold rings forming a complex of 14 icosahedra and 42 centered pentagonal prisms.

Fig. 3. Two icosahedral complexes of the kind shown in Fig. 2(c) sharing one equilateral triangle each with a Laves-Friauf polyhedron (dark), the center of which is a fourfold inversion center. Hence, each Laves-Friauf polyhedron is shared between four such complexes which are tetrahedrally arranged around the 4 center. For the sake of perspicuity one icosahedron has been removed from each 98-atom complex. each one with two atoms at the extended poles. It is almost identical to one of the four aggregates observed in the structure of Cu_4Cd_3 (Samson, 1967b), which, however, contains 1124 atoms per smallest unit cube.

The unit cell of Na₆Tl contains four aggregates of the kind shown in Fig. 2(c). These are arranged about the points, 0,0,0, *etc.* [point et 4(*a*)], and share edges and faces in such a way that the average number of atoms per aggregate is 98. Thus, the four aggregates account for 392 atoms per smallest unit cube. With the addition of 16 more atoms [16 Na(12)], each one out from the center of a hexagon of a Laves-Friauf polyhedron, the entire complement of 408 atoms in the unit cell is accounted for.

Fig. 3 shows two icosahedral (98-atom) complexes, each one sharing a triangle with the Laves-Friauf polyhedron (dark) the center of which coincides with a fourfold inversion center. Thus it is seen that each Laves-Friauf polyhedron is shared between four icosahedral complexes that are tetrahedrally arranged around a $\overline{4}$ center. As has already been noted, the center of the Laves-Friauf polyhedron ('void' in Table 2) is probably not occupied.

Other complex cubic A₆B compounds

The crystal-structure studies at this laboratory have revealed, so far, that there exist at least two types of complex cubic A_6B compounds with similar unit-cell contents: the Na₆Tl type containing 408 atoms per structural unit and the Mg₆Pd type (Samson, 1972) containing 396 atoms. Further structural details, including the interatomic distances, which account for similarities as well as the differences between the two types are discussed in the paper following this one (Samson, 1972).

Since the refined structure model does not differ from the original one communicated to the Ames Laboratory, and the shortest Tl–Tl distance observed is 5.631 Å, the general structural features of Na_6TI discussed by Greiner, *et al.* (1969) are still valid.

We thank Dr Richard Stanford for his valuable help in modifying the Varian 620i computer program to serve our special needs and for having written the IBM programs to process our intensity data. We also thank Mr Benes Trus and Mrs Jean Westphal for their successful effort in adapting the *CRYM* system to our refinement problem and for other valuable aid with computing problems. We express our special appreciation to Professor Jack Smith (Ames Laboratory) for having evidenced paramount and enduring interest in the structure studies of intermetallics conducted in this laboratory, and for the exchange of useful ideas.

References

- ARNDT, U. W. & WILLIS, B. T. M. (1966). Single-Crystal Diffractometry, p. 287. Cambridge Univ. Press.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program, Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- DAUBEN, C. N. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- GREINER, J. D., HANSEN, D. A. & SMITH, J. F. (1969). J. Less-Common Metals, 19, 23.
- GRUBE, G. & SCHMIDT, A. (1936). Z. Electrochem. 42, 201.
- HANSEN, D. A. (1968). Norelco Reporter, 15, 30.
- KURNAKOW, N. S. & PUSHIN, N. A. (1902). Z. Anorg. Allgem. Chem. 30, 86.
- LARSON, A. C. (1967). Acta Cryst. 23, 664.
- NELSON, J. B. & RILEY, D. P. (1945). Proc. Roy. Soc. 57, 16.
- PETERSON, S. W. & LEVY, H. A. (1957). Acta Cryst. 10, 70.
- SAMSON, S. (1964). Acta Cryst. 17, 491.
- SAMSON, S. (1966). Rev. Sci. Instrum. 37, 1255.
- SAMSON, S. (1967a). Rev. Sci. Instrum. 38, 1273.
- SAMSON, S. (1967b). Acta Cryst. 23, 586.
- SAMSON, S. (1972). Acta Cryst. B28, 936.