Complex Cubic $\mathbf{A}_{6} \mathbf{B}$ Compounds. I. The Crystal Structure of $\mathbf{N a}_{6} \mathbf{T l}{ }^{*}$

By Sten Samson and D.A. Hansen \dagger
Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91109, U.S.A.

(Received 5 May 1971)

Abstract

$\mathrm{Na}_{6} \mathrm{Tl}$ represents one of the two structure types so far found for complex $\mathrm{A}_{6} \mathrm{~B}$ compounds of cubic symmetry containing about 400 atoms each per smallest unit cube, arranged according to space group $F \overline{3} 3$. A complete structure determination has been carried out for this compound, with the use of packing maps and subsequent least-squares refinements employing intensity data of 1602 reflections measured with an automated X-ray diffractometer. The length of the cube edge is $a_{0}=24.154 \pm 0.001$ $\AA\left(\mathrm{Cu} K \alpha_{1}=1 \cdot 54051 \AA\right)$ giving a calculated density of $\varrho_{c}=2 \cdot 302 \mathrm{~g}_{\mathrm{cm}}{ }^{-3}$. The final R value is 0.137 . This unit cube contains one formula unit of $\mathrm{Na}_{352} \mathrm{Tl}_{56}$ (or eight units of $\mathrm{Na}_{44} \mathrm{Tl}_{7}$) and the atoms are distributed among 15 different point sets. Because of the likelihood of variable composition, especially in possible isostructural compounds, it seems practical to retain the formula $\mathrm{Na}_{6} \mathrm{Tl}$ as a name for this structure type. The basic building block of the structure consists of a complex of 14 icosahedra and 42 pentagonal prisms, which is nearly identical to one of the four complexes occurring in $\mathrm{Cu}_{4} \mathrm{Cd}_{3}$. Four such complexes share a Laves-Friauf polyhedron, the center of which was not fully occupied in the crystal used. Each thallium atom is surrounded by an icosahedron of sodium atoms in such a way that there are no $\mathrm{Tl}-\mathrm{Tl}$ contacts as was predicted on the basis of magnetic measurements.

Introduction

The crystal structure study of $\mathrm{Na}_{6} \mathrm{Tl}$ reported here was proposed to us by Professor J. F. Smith (Department of Metallurgy, Iowa State University) for the purpose of supplementing the results, obtained at his laboratory from measurements of magnetic susceptibilities. These were found to be temperature-dependent paramagnetic and of the Curie-Weiss type, giving a Curie constant of (4.92 ± 0.25) $\times 10^{-2}$ e.m.u., (${ }^{\circ} \mathrm{K} / \mathrm{g} . \mathrm{f} . \mathrm{w}$.), which corresponds to $0.63 \pm 0.02 \mathrm{Bohr}$ magnetons per formula unit of $\mathrm{Na}_{6} \mathrm{Tl}$ (i.e. per Tl atom). On the basis of this result and other calculations, Greiner, Hansen, \& Smith (1969) predicted that the thallium atoms in $\mathrm{Na}_{6} \mathrm{Tl}$ are isolated from one another, implying a $\mathrm{Tl}-\mathrm{Tl}$ internuclear separation of about $5 \AA$ or more.

A complete crystal-structure determination ($R=$ 16%) confirming the above prediction was carried out here, during the summer of 1967, with the use of X-ray data obtained from an irregular crystal at the Ames Laboratory. The results were reported to that laboratory, and an outline of some of the structural features together with the magnetic data was given by Greiner et al. (1969). The structure is cubic, space group $F \overline{4} 3 m, a_{o}=24 \cdot 154 \AA$.

The refinement of the structural parameters, and hence the present final report, was delayed to await the

[^0]collection of improved X-ray data from a spherically ground crystal and the development of facilities for sphere grinding of the extremely reactive compound.

Earlier investigations establishing the existence of $\mathrm{Na}_{6} \mathrm{Tl}$, but providing no crystallographic data, were those of Kurnakow \& Pushin (1902) and Grube \& Schmidt (1936). The two papers present almost identical results, stating that the compound forms peritectically at $85.9 \mathrm{at} . \%$ sodium $\left(\mathrm{Na}_{6 .} . \mathrm{Tl}\right)$ and $78^{\circ} \mathrm{C}$.

Experimental

Sample preparation

A 10 -gram sample of $\mathrm{Na}_{6} \mathrm{Tl}(12 \cdot 1 \mathrm{at} . \% \mathrm{Tl})$ was prepared by melting together reagent grade sodium (Fisher Scientific Company) and thallium of 99.99% purity (United Mineral and Chemical Corporation) in a stainless steel crucible, which was loaded and hermetically sealed by arc welding under dry argon gas. The sample was heated for one day at $350^{\circ} \mathrm{C}$ and frequently agitated, then annealed inside an oil bath for two days at $70 \cdot 0 \pm 0 \cdot 5^{\circ} \mathrm{C}$, for two days at $66.0 \pm 0 \cdot 5^{\circ} \mathrm{C}$, and finally cooled to room temperature at a rate of about 3° per hour.
The crucible was opened inside a locally designed and constructed glove box, equipped with a sphere grinder and a continuously operating, very effective NaK ('nack') gettering device, thus allowing ample time to manipulate the extremely reactive single crystals without causing detectable corrosion. Details of the apparatus will be described elsewhere.
Because $\mathrm{Na}_{6} \mathrm{Tl}$ is soft, spheres were obtained within a few minutes of grinding. These were encapsulated in glass capillaries according to the description given by

Hansen (1968), thus avoiding the use of oil for corrosion protection.

Unit cell and space group

Laue, rotation, and Weissenberg photographs of layer lines 0 to 4 about [001] obtained with the use of an encapsulated sphere showed that the structure was face-centered cubic having Laue symmetry $m 3 m$. Only
reflections of the type $h k l: h+k, k+l,(l+h)=2 n$ were present. The probable space group is, accordingly, $F 432, F m 3 m$ or $F \overline{4} 3 m$.

The length of the cube edge had been determined earlier at the Ames Laboratory with the use of an irregular crystal fragment, a General Electric diffractometer equipped with a 0.02° detector slit and a cop-per-target X-ray tube. Half-height, 2θ values were

Table 1. Observed and calculated structure factors for $\mathrm{Na}_{6} \mathrm{Tl}$
Each group of four columns contains, from left to right, indices l, observed structure factors, calculated structure factors, and standard deviations. Two dashes indicate that the measured value was given zero weight. Values of $F(\mathrm{cal})$ are based on the final isotropic refinement (Table 2).

determined for $20 \alpha_{1}$ reflections in the region $142^{\circ} \leq$ $2 \theta \leq 161^{\circ}$ with the 2θ-scan technique. The averages of these were fitted by least-squares calculations to the Nelson-Riley (1954) function and gave $a_{0}=24 \cdot 154 \pm$ $0.001 \AA\left[\lambda\left(\mathrm{Cu} \mathrm{K} \alpha_{1}\right)=1.54051 \AA\right]$.
The extreme reactivity of $\mathrm{Na}_{6} \mathrm{Tl}$ precluded experimental determination of the density. The unit-cell content was estimated with the use of average atomic volumes assuming a contraction of 10%. Assumption of $239 \AA^{3}$ per formula unit of $\mathrm{Na}_{6} \mathrm{Tl}$ leads to a unit-cell content of approximately 412 atoms.

Intensity data

Intensities were measured on a locally assembled, Syntex-automated, E\&A full-circle diffractometer, equipped with a scintillation detector modified according to Samson (1966), an Ortec counter circuitry with pulse-height analyser, a graphite monochromator designed and built in this laboratory's instrument shop, and a molybdenum-target X-ray tube. The diffractometer was aligned according to Samson (1967a). The X-ray collimator and the counter apertures were designed locally so as to provide maximum signal-tobackground ratios.

The $2 \theta: \theta$-scan method was used throughout at scanning speeds proportional to the peak intensities between 200 and 1500 counts per sec. The scanning speed used at, or below, 200 cps (peak counts) was 0.5° $\min ^{-1}$ and at, or above, $1500 \mathrm{cps} 2^{\circ} \min ^{-1}$. The total background counting time for each reflection was equal to the scanning time. This variable-scan-speed program was written by Dr Richard Stanford for the online Varian 620i computer controlling the diffractometer. This is the same principle now applied in a refined fashion to the well-known Syntex diffractometer.

The counter-aperture-to-crystal distance was set so as to give an optimal signal-to-background ratio, which was established by plotting the distance against
the ratio. At the optimal setting of 3.25 inches the ratio was improved by a factor of four as compared to that obtained at the distance of about $1 \cdot 25$ inches (or less) used on certain unmodified commercial instruments. The locally designed X-ray tube holder used here provides for both horizontal and vertical tube alignment. In the present experiment, the X-ray tube was set vertically, and the plane-normal of the graphite monochromator was perpendicular to the diffraction vector.

The crystal used was a sphere of 0.117 mm radius. Spherical absorption-correction factors for $\mu R=1.84$ were applied to the measured intensities, and the effect of the monochromator on the polarization was taken into account with the use of the formula given by Arndt \& Willis (1966), inserting $\theta_{M}=6.08^{\circ}$ and $\epsilon=90^{\circ}$. 1602 symmetrically independent reflections were measured, of which as many as 989 had an integrated intensity which was less than, or equal to, one standard deviation. The large number of very weak reflections is due to the high temperature factor associated with the low-melting point and the softness of the compound. Some very low-order reflections were feared to be affected by air scattering because of their proximity to the primary beam and were given zero weight. All other F_{o} values marked in Table 1 by two dashes were given zero weight because the integrated intensity was either zero or negative.

Derivation and isotropic refinement of the structure

The structure was derived by the method outlined by Samson (1964) which employs packing maps of the 'most useful planes', the nature of which depends on the space group. Since the crystal of $\mathrm{Na}_{6} \mathrm{Tl}$ was assumed (and soon found) to have the space-group symmetry $F \overline{4} 3 \mathrm{~m}$, many of the arguments used to determine its atomic arrangement are the same as those in the case of $\mathrm{Cu}_{4} \mathrm{Cd}_{3}$ (Samson, 1967b), and the reader is

Table 2. The refined positional parameters $\left(\times 10^{5}\right)$, population factors, and isotropic temperature factors for $\mathrm{Na}_{6} \mathrm{Tl}$
The standard deviations are given in parentheses.

Atom no.	Kind	Point set	x	z	B
1	Na	48(h) $x x z$, etc.	14228 (14)	03346 (21)	$5 \cdot 7$ (2) \AA^{2}
2	Na	$48(h) x x z$, etc.	08984 (17)	26791 (20)	$6 \cdot 3$ (2)
3	Na	$48(h) x x z$, etc.	15395 (16)	52856 (19)	$6 \cdot 4$ (3)
4	Na	$48(h) x x z$, etc.	05604 (15)	76942 (21)	$5 \cdot 9$ (2)
5	Na	$48(h) x x z$, etc.	19809 (14)	90985 (20)	$5 \cdot 9$ (2)
6	Na	$24(f) x 00$, etc.	10858 (28)		$5 \cdot 2$ (3)
7	Tl	$24(f) x 00$, etc.	33516 (4)		$4 \cdot 39$ (4)
8	$\mathrm{Na*}$		06815 (43)		$7 \cdot 3$ (6)
9	Na	$16($ e) $x x x$, etc.	30267 (23)		$4 \cdot 1$ (4)
10	Na	$16(e) x x x$, etc.	41542 (26)		$3 \cdot 4$ (4)
11	Na	$16(e) x x x$, etc.	55549 (24)		$3 \cdot 6$ (3)
12	Na	$16(e) x x x$, etc.	67234 (24)		$3 \cdot 6$ (3)
13	Tl	$16(e) x x x$, etc.	16755 (3)		$3 \cdot 59$ (4)
14	Tl	16(e) $x x x$, etc.	90136 (3)		$3 \cdot 30$ (3)
15	Void \dagger	4(d) $\frac{1}{4} \frac{1}{4} \frac{3}{4}$, etc.			

referred to that paper for more details. Space group $F \overline{4} 3 m$ has a single most useful plane: the (110) plane.
An enlightening feature discovered in the course of this work was the ease with which the Patterson vectors could be interpreted when they were plotted on a transparent template and then superimposed on the packing map. In such a manner, the only reasonable interpretation of the uuw Patterson section of $\mathrm{Na}_{6} \mathrm{Tl}$ was that the thallium atoms are located at the points marked 7,13 , and 14 on the (110) packing map shown in Fig. 1. It is seen that these points are arranged approximately around a fivefold axis of symmetry. Since the thallium atoms are smaller in radius (by about 10%) than the sodium atoms, it suggested itself that each of these represents the center of an icosahedron. Hence, the basic building block of the structure of $\mathrm{Na}_{6} \mathrm{Tl}$ should incorporate a set of five icosahedra arranged about a fivefold axis of symmetry in a manner similar to that observed for one of the four atom complexes occurring in $\mathrm{Cu}_{4} \mathrm{Cd}_{3}$. Accordingly, the five polygonal sections through the icosahedra marked 7, 13, and 14 in Fig. 1 were placed so as to match the pattern created by the polygonal sections marked 20, 27, and 28 in Fig. 1 of Samson's (1967b) paper on $\mathrm{Cu}_{4} \mathrm{Cd}_{3}$. The perfect geometrical fit of the fivefold sets on the packing map aroused immediate confidence as

Fig. 1. Packing map of the structure of $\mathrm{Na}_{6} \mathrm{Tl}$, representing the 'most useful plane' [(110) plane] for space group $F 43 m$. The asterisks indicate the location of the fourfold inversion centers. The polygonal sections marked 7, 13, and 14 represent icosahedra arranged approximately about fivefold axes of symmetry. Comparison of this figure with Fig. 1 in the paper describing $\mathrm{Cu}_{4} \mathrm{Cd}_{3}$ (Samson 1967b) shows that the $\mathrm{Na}_{6} \mathrm{Tl}$ structure type represents part of the structural motif of $\mathrm{Cu}_{4} \mathrm{Cd}_{3}$.
to the likelihood of the correctness of this model. One more atom (Na 12) had to be added out from the center of each hexagon of the Laves-Friauf polyhedron and possibly one additional atom at the center of each such polyhedron (point set $4(d)$, marked $V D$ for void in Fig. 1), which appeared to be somewhat crowded.
This distribution of atoms, which corresponds to the one given in Table 2, accounts for one formula unit of $\mathrm{Na}_{356} \mathrm{TI}_{56}$ or $\mathrm{Na}_{352} \mathrm{TI}_{56}$ (if $4(d)$ is empty) per unit cube. This agrees well with the content of about 412 atoms expected on the basis of average atomic volumes discussed in the preceding section.

With the atoms placed according to the 15 different point sets given in Table 2, the structure model was tested and refined by least-squares calculations including the 19 positional parameters, the 15 isotropic temperature factors, and the scale factors in one 35×35 matrix.

The calculations were done with the use of the CRYM system on an IBM $360 / 75$ computer. The quantity minimized was $\sum w\left(F_{o}^{2}-S^{2} F_{c}^{2}\right)^{2}$, where $1 / S$ is the scale factor of F_{o} and the weighting scheme is that described by Peterson \& Levy (1957), modified so as to apply to F^{2} rather than to F. All the R values quoted below are defined as $\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$. The atomic scattering factors for Na and Tl were taken from Cromer \& Waber (1965) and the anomalous dispersion correction factors from Ciomer (1965). These were applied according to the scheme given by Dauben \& Templeton (1955).

The first refinement was done using intensity data obtained from an irregular crystal at the Ames Laboratory. The refinement converged rapidly, resulting in an R of $0 \cdot 16$. The center of the Laves-Friauf polyhedron was found to be unoccupied as evidenced by a very high temperature factor for the assumed atom Na (15) (see Table 2).

As the new data became available, the refinement was first continued using all the 615 reflections having net intensities I larger than $\sigma(I)$. Evidence was obtained, again, that the point set $4(d)$ was occupied to only a small extent, or was perhaps empty, and the agreement index R was 0.064 . Inclusion of all the 1602 intensity data in the refinement did not result in a significant change of the positional parameters, but in a noticeable improvement of the standard deviations, and a slight increase in some of the temperature factors.

In the final refinement cycles employing all 1602 data, two population parameters p were included, one for $\mathrm{Na}(8)$, which had a comparatively high temperature factor, and one for point set $4(d)$ [void (15)]. The temperature factor for ($4 d$) was fixed somewhat arbitrarily at $B=5.0$ and excluded from the refinement. In addition, a secondary-extinction parameter g was applied according to equation (3) of the paper by Larson (1967), the matrix now being 37×37. The largest final shift was close to one third of its standard deviation.
The final R value obtained with all data included was $0 \cdot 137$, which is considered reasonable in view of
the exceptionally large number of very weak reflections and the scattering from the capillary. The final good-ness-of-fit was $1 \cdot 12$, and the extinction parameter refined to $g=(3 \cdot 53 \pm 0 \cdot 15) \times 10^{-9}$.

The final positional parameters, the population factors, and the isotropic temperature factors are listed in Table 2 and the structure factors in Table 1. Because of the close coupling with the temperature factors, the population parameters may be of questionable accuracy.

The chemical formula that corresponds to the refined model may be taken as $\mathrm{Na}_{352} \mathrm{Tl}_{56}$ or $\mathrm{Na}_{6 \cdot 29} \mathrm{Tl}$ ($\varrho_{\text {calc }}=$ $2.302 \mathrm{~g} . \mathrm{cm}^{-3}$). Because of the possibility of variable composition, especially in possible isostructural compounds (see below), it seems practical to retain the name $\mathrm{Na}_{6} \mathrm{Tl}$ for this structure type.

Cursory anisotropic refinement

The relatively large magnitude of the isotropic temperature factors is most likely due to the low melting point of the compound ($78^{\circ} \mathrm{C}$; see Introduction), which, in turn is reflected in the softness of the crystals. In order to obtain some idea about the anisotropy of the thermal motions, three additional least-squares calculations were carried out, this time with the use of program $X F L S$.*

The parameters listed in Table 2 were used as a starting point. Full occupancy was assumed of all positions except for 'void 15', which was taken to be occupied 19% of the time by sodium, with B (iso) fixed at 5.0 (as before). The result is shown in Table 3.

The positional parameter X of $\mathrm{Na}(2)$ changed from 0.08984 (Table 2) to 0.09126 , the parameter Z of $\mathrm{Na}(3)$ changed from 0.52856 to 0.52985 , and the parameter X of $\mathrm{Na}(12)$ from 0.67234 to 0.6752 I. The changes in the other positional parameters were equal to, or less than three standard deviations.

* XFLS is an IBM-360 version of ORFLS (Busing, Martin \& Levy, 1962).

The R value for the 615 reflections having net intensities I larger than $\sigma(I)$ decreased from 0.064 to 0.050 . The overall R value, for 1599 reflections, including 312 data representing zero intensity, is $0 \cdot 186$.

Since the program has no provision for refining the extinction parameter g discussed in the preceding section, the two strongest reflections, 066 \& 228, were excluded from the refinement.

It is seen that the atoms $\mathrm{Na}(5)$ and $\mathrm{Na}(12)$ constituting the Laves-Friauf polyhedron show the most pronounced anisotropy.

Description of the structure

Each of the 56 thallium atoms is surrounded by an icosahedron of 12 sodium atoms. The structure can be described most conveniently in terms of a complex consisting of 14 such icosahedra as shown in Fig. 2. Five icosahedra are arranged approximately about a fivefold axis of symmetry [Fig. 2(a)], thus enclosing a pentagonal prism. These icosahedra are the ones that have been marked 7,13 , and 14 on the packing map Fig. 1. Six such fivefold rings interpenetrate one another and share icosahedra so as to form the aggregate shown in Fig. 2(c), which consists of 14 icosahedra that enclose six pentagonal prisms of the kind shown at the center of Fig. 2(a). The center of each such prism is located at the vertex of an octahedron of T_{d} symmetry. Fig. 2(b) shows two such fivefold rings interpenetrating at right angles. It is now seen that the pentagonal prism at the center of Fig. 2(a) is shared between two icosahedra, one above and the other below the plane of the paper. The two icosahedra have one vertex in common at the center of that pentagonal prism, and each icosahedron center is at an extended pole of that prism. Each additional vertex that is shared between two icosahedra represents the center of a pentagonal prism (which has two atoms at its extended poles), as seen in Fig. 2(c). Accordingly, 36 more pentagonal prisms are created.
The aggregate shown in Fig. 2(c), accordingly, represents 14 icosahedra and 42 pentagonal prisms,

Table 3. Anisotropic thermal parameters for $\mathrm{Na}_{6} \mathrm{Tl}$
The expression used was of the form: $-\left[B_{11}^{\prime} h^{2}+B_{22}^{\prime} k^{2}+B_{33}^{\prime} l^{2}+2 B_{12}^{\prime} h k+2 B_{13}^{\prime} k l+2 B_{23}^{\prime} k l\right]$. The standard deviations are given in parentheses, and $B_{i j}^{\prime}=4 a_{0}{ }^{2} B_{i j}\left(\AA^{2}\right)$.

	B_{11}					B_{33}
	B_{11}	B_{22}	B_{12}	B_{13}	B_{23}	
$\mathrm{Na}(1)$	$5 \cdot 9(2)$	B_{11}	$4 \cdot 1(4)$	$0 \cdot 3(3)$	$-1 \cdot 1(2)$	B_{13}
$\mathrm{Na}(2)$	$6 \cdot 3(3)$	B_{11}	$6 \cdot 7(5)$	$0 \cdot 1(4)$	$0.8(3)$	B_{13}
$\mathrm{Na}(3)$	$5 \cdot 8(3)$	B_{11}	$6 \cdot 7(5)$	$1 \cdot 1(4)$	$-0 \cdot 5(3)$	B_{13}
$\mathrm{Na}(4)$	$5 \cdot 4(2)$	B_{11}	$5 \cdot 5(5)$	$-0 \cdot 6(3)$	$0 \cdot 7(2)$	B_{13}
$\mathrm{Na}(5)$	$4 \cdot 8(2)$	B_{11}	$8 \cdot 0(5)$	$-0 \cdot 7(3)$	$0 \cdot 3(2)$	B_{13}
$\mathrm{Na}(6)$	$6 \cdot 7(5)$	$4 \cdot 2(3)$	B_{22}	0	0	$-0 \cdot 1(5)$
$\mathrm{Tl}(7)$	$2 \cdot 96(5)$	$4 \cdot 92(5)$	B_{22}	0	0	$-0 \cdot 19(7)$
$\mathrm{Na}(8)$	$7 \cdot 9(9)$	$7 \cdot 5(5)$	B_{22}	0	0	$0 \cdot 5(7)$
$\mathrm{Na}(9)$	$4 \cdot 5(4)$	B_{11}	B_{11}	$-0 \cdot 8(3)$	B_{12}	B_{12}
$\mathrm{Na}(10)$	$4 \cdot 8(4)$	B_{11}	B_{11}	$0 \cdot 4(3)$	B_{12}	B_{12}
$\mathrm{Na}(11)$	$4 \cdot 4(3)$	B_{11}	B_{11}	$0 \cdot 7(4)$	B_{12}	B_{12}
$\mathrm{Na}(12)$	$5 \cdot 0(3)$	B_{11}	B_{11}	$2 \cdot 2(4)$	B_{12}	B_{12}
$\mathrm{Tl}(13)$	$3 \cdot 56(2)$	B_{11}	B_{11}	$0 \cdot 37(5)$	B_{12}	B_{12}
$\mathrm{Tl}(14)$	$3 \cdot 20(2)$	B_{11}	B_{11}	$0 \cdot 03(2)$	B_{12}	B_{12}

Fig. 2. (a) The basic building block of $\mathrm{Na}_{6} \mathrm{Tl}$ consisting of an aggregate of five icosahedra arranged approximately about a fivefold axis of symmetry. (b) Two such fivefold rings interpenetrating at right angles in such a way that the central pentagonal prism in (a) is shared by two icosahedra. (c) Six interpenetrating fivefold rings forming a complex of 14 icosahedra and 42 centered pentagonal prisms.

Fig. 3. Two icosahedral complexes of the kind shown in Fig. 2(c) sharing one equilateral triangle each with a LavesFriauf polyhedron (dark), the center of which is a fourfold inversion center. Hence, each Laves-Friauf polyhedron is shared between four such complexes which are tetrahedrally arranged around the $\overline{4}$ center. For the sake of perspicuity one icosahedron has been removed from each 98 -atom complex.
each one with two atoms at the extended poles. It is almost identical to one of the four aggregates observed in the structure of $\mathrm{Cu}_{4} \mathrm{Cd}_{3}$ (Samson, 1967b), which, however, contains 1124 atoms per smallest unit cube.

The unit cell of $\mathrm{Na}_{6} \mathrm{Tl}$ contains four aggregates of the kind shown in Fig. 2(c). These are arranged about the points, $0,0,0$, etc. [point et $4(a)$], and share edges and faces in such a way that the average number of atoms per aggregate is 98 . Thus, the four aggregates account for 392 atoms per smallest unit cube. With the addition of 16 more atoms [$16 \mathrm{Na}(12)$], each one out from the center of a hexagon of a Laves-Friauf polyhedron, the entire complement of 408 atoms in the unit cell is accounted for.

Fig. 3 shows two icosahedral (98 -atom) complexes, each one sharing a triangle with the Laves-Friauf polyhedron (dark) the center of which coincides with a fourfold inversion center. Thus it is seen that each Laves-Friauf polyhedron is shared between four icosahedral complexes that are tetrahedrally arranged around a $\overline{4}$ center. As has already been noted, the center of the Laves-Friauf polyhedron ('void' in Table 2) is probably not occupied.

Other complex cubic $\mathbf{A}_{6} B$ compounds

The crystal-structure studies at this laboratory have revealed, so far, that there exist at least two types of complex cubic $\mathrm{A}_{6} \mathrm{~B}$ compounds with similar unit-cell contents: the $\mathrm{Na}_{6} \mathrm{Tl}$ type containing 408 atoms per structural unit and the $\mathrm{Mg}_{6} \mathrm{Pd}$ type (Samson, 1972) containing 396 atoms. Further structural details, including the interatomic distances, which account for similarities as well as the differences between the two types are discussed in the paper following this one (Samson, 1972).

Since the refined structure model does not differ from the original one communicated to the Ames Laboratory, and the shortest $\mathrm{Tl}-\mathrm{Tl}$ distance observed
is $5.631 \AA$, the general structural features of $\mathrm{Na}_{6} \mathrm{Tl}$ discussed by Greiner, et al. (1969) are still valid.

We thank Dr Richard Stanford for his valuable help in modifying the Varian 620i computer program to serve our special needs and for having written the IBM programs to process our intensity data. We also thank Mr Benes Trus and Mrs Jean Westphal for their successful effort in adapting the $C R Y M$ system to our refinement problem and for other valuable aid with computing problems. We express our special appreciation to Professor Jack Smith (Ames Laboratory) for having evidenced paramount and enduring interest in the structure studies of intermetallics conducted in this laboratory, and for the exchange of useful ideas.

References

Arndt, U. W. \& Willis, B. T. M. (1966). Single-Crystal Diffractometry, p. 287. Cambridge Univ. Press.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program, Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Dauben, C. N. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.

Greiner, J. D., Hansen, D. A. \& Smith, J. F. (1969). J. Less-Common Metals, 19, 23.
Grube, G. \& Schmidt, A. (1936). Z. Electrochem. 42, 201.
Hansen, D. A. (1968). Norelco Reporter, 15, 30.
Kurnakow, N. S. \& Pushin, N. A. (1902). Z. Anorg. Allgem. Chem. 30, 86.
Larson, A. C. (1967). Acta Cryst. 23, 664.
Nelson, J. B. \& Riley, D. P. (1945). Proc. Roy. Soc. 57, 16. Peterson, S. W. \& Levy, H. A. (1957). Acta Cryst. 10, 70. Samson, S. (1964). Acta Cryst. 17, 491.
Samson, S. (1966). Rev. Sci. Instrum. 37, 1255.
Samson, S. (1967a). Rev. Sci. Instrum. 38, 1273.
Samson, S. (1967b). Acta Cryst. 23, 586.
Samson, S. (1972). Acta Cryst. B28, 936.

[^0]: * Contribution No. 4248 from Arthur Amos Noyes Laboratory of Chemical Physics. This work was supported by Grant Nos. GP-7984 and GP-17504 (Samson) and CK-2272 (Hansen) from the National Science Foundation.
 \dagger Present address: Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65201, U.S.A.

